

    
      
          
            
  
QUIC v.s. TCP

A Survey and Benchmark of QUIC.
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Introduction


What is QUIC

QUIC (Quick UDP Internet Connections) is a new transport protocol for the internet, developed by Google. It solves a number of transport-layer and application-layer problems experienced by modern web applications, while requiring little or no change from application writers.
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Key features

Key features of QUIC over existing TCP+TLS+HTTP2 include


	Dramatically reduced connection establishment time


	Improved congestion control


	Multiplexing without head of line blocking


	Forward error correction


	Connection migration







Goals

Analyze performance of TCP and QUIC in terms of:


	Total transfer time


	Average Bandwidth used


	Overhead in bytes










          

      

      

    

  

    
      
          
            
  
Methods


Experimental Setup


Overview

A 33.6 MB testfile index.html will generate in /var/www/html/ and we will get it from quic server and apache2 server with quic client and wget. The protocal two way used is QUIC and TCP. And we will run the experiments under difference network enviroments.

For practical, we will use simulate enviroment in local. We use tc netem and tbf to config local loopback interface.
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Experimental Platform


	Hardware

| Hardware  | Parameters                                  |
| --------- | ----------------------------------------    |
| Memory    | 16GB                                        |
| Processor | Intel® Xeon(R) CPU E3-1230 v5 @ 3.40GHz × 8 |
| Disks     | SAMSUNG 850 EVO                             |



	Software

| Software |      Parameters         |
| -------- | ----------------------- |
| OS       | Ubuntu16.04             |
| OS-type  | 64 bit                  |
| Kernel   | Linux 4.4.0-104-generic |
| GCC      | GCC 5.4                 |
| Python   | Python 2.7.12           |








Compile Chromium

Because of the quic protocal is embedded in Chromium, so we must build our quic_server and quic_client from the source of Chromium.


	clone the source of chromuim


	building for the first time, install dependencies




./src/build/install-build-deps.sh






	Build the QUIC client, server, and tests:




cd src
gn gen out/Default && ninja -C out/Default quic_client quic_server net_unittests






	Prepe test data from www.example.org




mkdir /tmp/quic-data
cd /tmp/quic-data
wget -p --save-headers https://www.example.org






	Generate certificates
In order to run the server, you will need a valid certificate, and a private key in pkcs8 format.




cd net/tools/quic/certs
./generate-certs.sh
cd -






	In addition, a CA certificate was also generated and trusted by following the instructions in the ‘Linux Cert Management’ page located in the Chromium website







Apache2 Server

We will test TCP with Apache2 Server, to be closer to the reality world, we config the server with TLS.


	Create the SSL Certificate


	Configure Apache to Use SSL


	Adjust the Firewall


	Enable the Changes in Apache







Prepare for Experiments

Before we start the experiments, we need finished this four steps:


	Set loopback interface mtu to 1500


	IPv6 disabling on loopback


	Start Apache2 Server


	Start QUIC Server




See detail in env_setup.sh.






Run and Analyse


Usage

./scripts/env_setup.sh
./scripts/run,sh
./scripts/analyse.sh








The Emulating Enviroments


	Control Parameters
bandwidths : Limiting the maximum link bitrate.
delay : One-way delay to packets that are going from a server to client.
losses : Drop packets that are going from a server to client.
spikes : A period of time(default 200ms) when bandwidth drop to a certain percentage.


	Parameters with values used in our experiments




protocal = ['quic', 'tcp']
bandwidths = ['100', '40', '5']
delay = ['10', '50'] or ['10', '20', '40', '60', '80', '100', '120']
losses = ['0.0', '5.0']
spikes = ['0', '1']








Details


	Generate raw data
This function is finished in run_benchmark.py, the scripts include three steps:





	Generate the Params Queue from the arguments parsing


	Configuration of local loopback interface for every params


	Data captured with tcpdump, and stored into ./raw/ for every params.





	Data Analysis
This function is finished in preprocess.py and average.py, the scripts include three steps:





	Clean the raw data and stored the preprocessed data in ./processed/, in order to extract only the data required (timestamp and bytes).


	average.py averages different instances of the same test. By default, each test is run five times.





	Visualization
This function is finished in plot.py and plot2.py, the scripts include three steps:





	Creates all plots that are not time series (bandwidth, overhead and time) vs (delay, bandwidth, packet loss)


	Generates time series for the processed data extracted from the tests in the /processed/ folder












          

      

      

    

  

    
      
          
            
  
Results


Time series
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delay
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bandwidth
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packet loss
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Jitter

[image: ]

[image: ]




Analysis


	At the cost of higher overhead, QUIC outperforms TCP in terms of time for transfer and average bandwidth used.


	When high delay, packet loss, and high bandwidth, QUIC will perform much better than TCP including time for transfer and throughput.


	Under favorable conditions, The QUIC will be more stable than TCP. You can see two picture in section Time series.


	Under packet loss, QUIC also surpasses TCP.  When packet loss is 0%, throughput of QUIC is much higher than TCP. When packet loss is 5%, throughput of two protocol is very close, but QUIC is higher still.


	But when jitter happen, TCP can surpasses QUIC. Because the feature of the QUIC, QUIC can't handle the jitter better than TCP. It imply that QUIC is immature and not prefect.










          

      

      

    

  

    
      
          
            
  
Conclusions


Conclusions

QUIC is a new network protocol that resides in the application layer over UDP. Google developed QUIC as an alternative to TCP. Two browsers (Chrome and Opera) and Google servers are the only entities that support QUIC. When a user accesses Google’s services such as Gmail over the aforementioned browsers, the data transfer will use UDP-based QUIC.




Future Works


	Designing new tests to measure fairness when sharing bandwidth with other QUIC/TCP flows


	Stream Multiplexing in QUIC: Evaluate advantages over loading HTTP pages, for example.


	Connection Migration


	QUIC over a Wireless Network
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