

QUIC v.s. TCP

A Survey and Benchmark of QUIC.

Contents:

	Introduction
	What is QUIC

	Key features

	Goals

	Methods
	Experimental Setup

	Run and Analyse

	Results
	Time series

	delay

	bandwidth

	packet loss

	Jitter

	Analysis

	Conclusions
	Conclusions

	Future Works

	Referance

Introduction

What is QUIC

QUIC (Quick UDP Internet Connections) is a new transport protocol for the internet, developed by Google. It solves a number of transport-layer and application-layer problems experienced by modern web applications, while requiring little or no change from application writers.

[image:]

Key features

Key features of QUIC over existing TCP+TLS+HTTP2 include

	Dramatically reduced connection establishment time

	Improved congestion control

	Multiplexing without head of line blocking

	Forward error correction

	Connection migration

Goals

Analyze performance of TCP and QUIC in terms of:

	Total transfer time

	Average Bandwidth used

	Overhead in bytes

Methods

Experimental Setup

Overview

A 33.6 MB testfile index.html will generate in /var/www/html/ and we will get it from quic server and apache2 server with quic client and wget. The protocal two way used is QUIC and TCP. And we will run the experiments under difference network enviroments.

For practical, we will use simulate enviroment in local. We use tc netem and tbf to config local loopback interface.

[image:]

Experimental Platform

	Hardware

Hardware	Parameters
Memory	16GB
Processor	Intel® Xeon(R) CPU E3-1230 v5 @ 3.40GHz × 8
Disks	SAMSUNG 850 EVO

	Software

Software	Parameters
OS	Ubuntu16.04
OS-type	64 bit
Kernel	Linux 4.4.0-104-generic
GCC	GCC 5.4
Python	Python 2.7.12

Compile Chromium

Because of the quic protocal is embedded in Chromium, so we must build our quic_server and quic_client from the source of Chromium.

	clone the source of chromuim

	building for the first time, install dependencies

./src/build/install-build-deps.sh

	Build the QUIC client, server, and tests:

cd src
gn gen out/Default && ninja -C out/Default quic_client quic_server net_unittests

	Prepe test data from www.example.org

mkdir /tmp/quic-data
cd /tmp/quic-data
wget -p --save-headers https://www.example.org

	Generate certificates
In order to run the server, you will need a valid certificate, and a private key in pkcs8 format.

cd net/tools/quic/certs
./generate-certs.sh
cd -

	In addition, a CA certificate was also generated and trusted by following the instructions in the ‘Linux Cert Management’ page located in the Chromium website

Apache2 Server

We will test TCP with Apache2 Server, to be closer to the reality world, we config the server with TLS.

	Create the SSL Certificate

	Configure Apache to Use SSL

	Adjust the Firewall

	Enable the Changes in Apache

Prepare for Experiments

Before we start the experiments, we need finished this four steps:

	Set loopback interface mtu to 1500

	IPv6 disabling on loopback

	Start Apache2 Server

	Start QUIC Server

See detail in env_setup.sh.

Run and Analyse

Usage

./scripts/env_setup.sh
./scripts/run,sh
./scripts/analyse.sh

The Emulating Enviroments

	Control Parameters
bandwidths : Limiting the maximum link bitrate.
delay : One-way delay to packets that are going from a server to client.
losses : Drop packets that are going from a server to client.
spikes : A period of time(default 200ms) when bandwidth drop to a certain percentage.

	Parameters with values used in our experiments

protocal = ['quic', 'tcp']
bandwidths = ['100', '40', '5']
delay = ['10', '50'] or ['10', '20', '40', '60', '80', '100', '120']
losses = ['0.0', '5.0']
spikes = ['0', '1']

Details

	Generate raw data
This function is finished in run_benchmark.py, the scripts include three steps:

	Generate the Params Queue from the arguments parsing

	Configuration of local loopback interface for every params

	Data captured with tcpdump, and stored into ./raw/ for every params.

	Data Analysis
This function is finished in preprocess.py and average.py, the scripts include three steps:

	Clean the raw data and stored the preprocessed data in ./processed/, in order to extract only the data required (timestamp and bytes).

	average.py averages different instances of the same test. By default, each test is run five times.

	Visualization
This function is finished in plot.py and plot2.py, the scripts include three steps:

	Creates all plots that are not time series (bandwidth, overhead and time) vs (delay, bandwidth, packet loss)

	Generates time series for the processed data extracted from the tests in the /processed/ folder

Results

Time series

[image:]

delay

[image:]

bandwidth

[image:]

packet loss

[image:]

Jitter

[image:]

[image:]

Analysis

	At the cost of higher overhead, QUIC outperforms TCP in terms of time for transfer and average bandwidth used.

	When high delay, packet loss, and high bandwidth, QUIC will perform much better than TCP including time for transfer and throughput.

	Under favorable conditions, The QUIC will be more stable than TCP. You can see two picture in section Time series.

	Under packet loss, QUIC also surpasses TCP. When packet loss is 0%, throughput of QUIC is much higher than TCP. When packet loss is 5%, throughput of two protocol is very close, but QUIC is higher still.

	But when jitter happen, TCP can surpasses QUIC. Because the feature of the QUIC, QUIC can't handle the jitter better than TCP. It imply that QUIC is immature and not prefect.

Conclusions

Conclusions

QUIC is a new network protocol that resides in the application layer over UDP. Google developed QUIC as an alternative to TCP. Two browsers (Chrome and Opera) and Google servers are the only entities that support QUIC. When a user accesses Google’s services such as Gmail over the aforementioned browsers, the data transfer will use UDP-based QUIC.

Future Works

	Designing new tests to measure fairness when sharing bandwidth with other QUIC/TCP flows

	Stream Multiplexing in QUIC: Evaluate advantages over loading HTTP pages, for example.

	Connection Migration

	QUIC over a Wireless Network

Referance

	https://www.chromium.org/quic/playing-with-quic

	http://cizixs.com/2017/10/23/tc-netem-for-terrible-network

	http://linuxwiki.github.io/NetTools/tcpdump.html

	http://dmdgeeker.com/post/tcpdump-basic-usage/

	http://matplotlib.org/

	https://liam0205.me/2014/09/11/matplotlib-tutorial-zh-cn/

Index

 _images/quic.png
HTTP/2 API

_images/struct.png
Chromium Experimental
Browser loopback interface QUIC Server

customized with
wget client netem + tbf

_images/jitter_time.png
Throughput Comparison: Delay 10 ms, Bandwidth 40 Mbps, PckLoss: 0.0%, with spikes

Throughput (Mbps)

~

IN

w

-2

4 6
Time in seconds

10

12

—*— QuIC
% TCP

Throughput Comparison: Delay 10 ms, Bandwidth 100 Mbps, PckLoss: 0.0%, with spikes

Throughput (Mbps)

10

-2

4
Time in seconds

10

—*— QuIC
% TCP

_images/loss.png
Throughput Comparison against packet loss: Delay 10 ms, Bandwidth 100 Mbps, with no spikes

Throughput (Mbps)

80

60

40

20

+

2 3
Packet Loss (%)

4 Qquic
¢ TCP

Overhead Comparison against packet loss: Delay 10 ms Bandwidth 100 Mbps, with no spikes

Overhead (MB)

4.0 ’ ¢
3.5
3.0 Iy
25
2.0

-1 0 2 3 5

Packet Loss (%)

4 Qquic
¢ TCP

_static/comment-bright.png

_images/time.png
Throughput Comparison: Delay 10 ms, Bandwidth 100 Mbps, PckLoss: 0.0%, with no spikes

Throughput (Mbps)

20.0

17.5

15.0

125

10.0

75

5.0

25

0.0

3

4
Time in seconds

5

—%— QuIC
% TCP

Throughput Comparison: Delay 10 ms, Bandwidth 5 Mbps, PckLoss: 5.0%, with no spikes

Throughput (Mbps)

1.0

0.8

0.6

0.4

0.2

0.0

0 20 40 60 80
Time in seconds

—%— QuIC
% TCP

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_images/bandwidth.png
Throughput (Mbps)

Throughput Comparison vs Bandwidth: loss 0.0 Delay 50 ms, with no spikes

45

40

35

30

25

20

15

10

{

20

40

60
Bandwidth (Mbps)

80

100

4 Quic
¢ TCP

Throughput (Mbps)

80

60

40

20

Throughput Comparison vs Bandwidth: loss 0.0 Delay 10 ms, with no spikes

’ t
+
i
20 40 60 80 100

Bandwidth (Mbps)

4 Quic
¢ TCP

_images/delay.png
Time transfer Comparison vs delay: Ploss 0.0%, ms, Jitter 0 ms, Bandwidth 100 Mbps, with no spikes Throughput Comparison vs delay: Ploss 2.5%, Jitter 0 ms, Bandwidth 1 Mbps, with no spikes
3) ; : . i P

T3 quic + 4) ’ 33 quc
T3 TCP 4 33 TCP
30 3
09 i
525 }
8 2
£ 20 £08
= 5
8 2
5
215 ‘ go7
s £
% I £ !
210 I
06 I
5
0 05
0 20 0 60 80 100 120 0 20 40 60 80 100 120

Delay (ms) Delay (ms)

_images/jitter.png
Throughput (Mbps)

35

30

25

10

Throughput Comparison vs Bandwidth: loss 0.0 Delay 10 ms, with spikes

!

20

40

60
Bandwidth (Mbps)

80

100

4 Qquic
¢ TCP

Total time for transfer (s)

3000

2000

1000

Time transfer Comparison vs delay: loss 0.0 Delay 10 ms, with spikes

20

40 60 80
Bandwidth (Mbps)

100

¢ aquic
¢ TCP

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 QUIC v.s. TCP

 		
 Introduction

 		
 What is QUIC

 		
 Key features

 		
 Goals

 		
 Methods

 		
 Experimental Setup

 		
 Overview

 		
 Experimental Platform

 		
 Compile Chromium

 		
 Apache2 Server

 		
 Prepare for Experiments

 		
 Run and Analyse

 		
 Usage

 		
 The Emulating Enviroments

 		
 Details

 		
 Results

 		
 Time series

 		
 delay

 		
 bandwidth

 		
 packet loss

 		
 Jitter

 		
 Analysis

 		
 Conclusions

 		
 Conclusions

 		
 Future Works

 		
 Referance

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

